Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems
نویسندگان
چکیده
We construct a preconditioned modified Hermitian and skew-Hermitian splitting (PMHSS) iteration scheme for solving and preconditioning a class of block two-by-two linear systems arising from the Galerkin finite element discretizations of a class of distributed control problems. The convergence theory of this class of PMHSS iteration methods is established and the spectral properties of the PMHSSpreconditioned matrix are analysed. Numerical experiments show that the PMHSS preconditioners can be quite competitive when used to precondition Krylov subspace iteration methods such as GMRES.
منابع مشابه
On Pmhss Iteration Methods for Continuous Sylvester Equations
The modified Hermitian and skew-Hermitian splitting (MHSS) iteration method and preconditioned MHSS (PMHSS) iteration method were introduced respectively. In the paper, on the basis of the MHSS iteration method, we present a PMHSS iteration method for solving large sparse continuous Sylvester equations with non-Hermitian and complex symmetric positive definite/semi-definite matrices. Under suit...
متن کاملOn the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملComparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems. Stokes control
The governing dynamics of fluid flow is stated as a system of partial differential equations referred to as the Navier-Stokes system. In industrial and scientific applications, fluid flow control becomes an optimization problem where the governing partial differential equations of the fluid flow are stated as constraints. When discretized, the optimal control of the Navier-Stokes equations lead...
متن کاملSpectral properties of the preconditioned AHSS iteration method for generalized saddle point problems
In this paper, we study the distribution on the eigenvalues of the preconditioned matrices that arise in solving two-by-two block non-Hermitian positive semidefinite linear systems by use of the accelerated Hermitian and skew-Hermitian splitting iteration methods. According to theoretical analysis, we prove that all eigenvalues of the preconditioned matrices are very clustered with any positive...
متن کامل